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1. Introductory remarks
A lot has been written about the Sleeping Beauty (SB) problem’, some would say too
much. So why another paper? | have not written this paper out of an interest in
engaging in the SB debate itself, but rather because | feel the constructs associated
with resolving it are interesting in their own right. From the papers and blogs | have
read, it appears that the clarification of a key concept, namely how to restrict an
experiment/system to only being in certain states, would facilitate a better
understanding of the underlying constructs involved in the debate. We give a definition
of this simple concept in this paper and describe its relevance to the SB problem (the
SB experiment seems to be the simplest example that is required to illustrate the
concept).

Lack of clarification of the above concept is not the only source of confusion in the SB
debate. The contention between ‘halfers’ and ‘thirders’ over the SB problem also arises
for another reason, namely confusion over which exact problem or which frame of
reference is being considered: the perspective of the subject SB ‘waking up’ inside the
experiment, or the perspective of an external observer who chooses to randomly
inspect the state of the experiment.

For a general experiment X (viewed as a Markov Chain), there are two natural
probability measures on the set of states of the experiment which could compete for the
notion of “the probability that the experiment currently is in a subset S of the states”.

' | am assuming the reader is already familiar with the Sleeping Beauty problem, popularized by Adam Elga.
In particular, | assume the reader is familiar with the terms ‘thirders’ and ‘halfers’. For details, see the
Wikipedia article. To remind the reader of the problem, SB is the subject of the following experiment: at the
start of the experiment there will be a fair coin toss; tails determines she will be awoken on both Monday and
Tuesday; heads will determine she will be awoken on Monday but not Tuesday; that whenever she is
awoken she will be asked to calculate the probability the toss was Heads, and then after a brief period put
back to sleep; and that her memories of being awoken will be erased once put back to sleep. We assume
upon awakening SB is aware of the complete experimental set-up. ‘Thirders’ argue that upon being awoken
SB should calculate the probability the toss was Heads as Vs, while ‘halfers’ argue it should be Y. Of course,
not all thirders (or halfers) argue for the same reasons.
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We argue that one of these is appropriate for the perspective of an external observer.
We denote it by =, and it satisfies the property that =(S) <E(T) if and only if the
expected number of times the experiment is in S is less than the expected number of
times the experimentis in 7' (where the expectation is taken over the probability space
of behaviours of the experiment). We call £, the counting measure. This is the
measure implicitly used by most ‘thirders’.

We claim that there is another natural probability measure that is appropriate for the
perspective of a subject inside the experiment. We denote it I1,, and it satisfies the
property that IT(S) <I1(7) if and only if the expected proportion (or percentage) of
times the experimentis in S is less than the expected proportion of times the
experiment is in T (where again the expectation is taken over the probability space of
behaviours of the experiment). We call I1, the proportion measure. | will argue that the
proportion measure II is the appropriate measure for SB to use, and give examples
where = would instead be the appropriate measure to use.

As both IT and E are probability measures on the set of states of an experiment, each
admit their own conditioning (which | will call classical conditioning). But there is another
type of ‘conditioning’, which | refer to as “conditioning on only being in a subset C of the
states of the experiment” or, to avoid confusion with classical probability conditioning,
“restricting to only being in a subset C of the states of the experiment”.

This is best understood as an operation applied to an experiment, and not a construct
that is inherently specific to any probability measure on the set states of the experiment:
given an experiment X, viewed as a Markov Chain with specified begin and end states,
we can construct another experiment (X]C) which only has states C. We refer to (X|C)
as the experiment X restricted to only being in the states C. Then, to define what is
meant by evaluating a probability measure, say I1, on a subset of states S of an
experiment restricted to only being in the subset of states C, we first construct the
experiment (X|C), and then calculate yo(SNC). We argue that this is the type of
‘conditioning’ SB should use, where S is the subset of states corresponding to Heads
having been tossed, and C is the set of states where SB is awake. In this case it will
turn out TI (SN C) = 1. So, yes, | am a ‘halfer’ when it comes to the standard SB
experiment.

To clarify the difference between this type of conditioning and the classical one, we give
another example of an experiment: SB is now awoken on both Monday and Tuesday
regardless of the toss, and is given orange juice when awoken except on a Tuesday
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after Heads was tossed, in which case she is given apple juice. Formally, this
experiment is modelled by an equivalent Markov Chain to the standard SB problem
(awoken~awoken and served orange juice, asleep ~ awoken and served apple juice).
But in this case, if awoken and served OJ, to determine the probability that Heads was
tossed we argue she should use classical conditioning and calculate TI(S|C) , which
turns out to be Va.

The distinction between this situation and the standard SB problem is that here the
subject SB could potentially have been served apple juice and be asking herself about
the probability of the toss; while in the standard example there is no sense in which she
could be asleep and be asking herself about the probability of the toss, so she needs to
restrict the experiment to only being in states where she is awake. Another way to view
this is in terms of information: when SB is evaluating the information she has at hand,
she needs to take into account the possible alternatives; and, in the standard SB
example, the state of being Asleep should be removed since it is not an alternative state
she could find herself in - but this should be done in a way that allows behaviours
passing through that state to still be accounted for.

The mathematics presented here codifies this distinction, that is, the difference between
(a) ‘conditioning a probability measure on an experiment being in a state satisfying
property P as opposed to —P’ (which is what is achieved when conditioning with
respect to a probability measure), and (b) ‘calculating a probability measure when
restricting an experiment to only being in states satisfying property P .

A lot of the noise made by thirders can be interpreted in terms of the fact that this
operation of “restricting to only being in a subset of states” taken together with the
proportion probability measure I1 does not satisfy the usual laws of conditioning (e.g.
Bayes Theorem). For example, the following identity does not hold in general for disjoint
subsets C and D:

Iy cumy(S N (C U D)) = TL(C) # I (SN €) + ILy(D) * I, (SN D).

But given the restriction operation is a construct on experiments, there is no reason for
us to expect it to.

In fact, in the context of applying this restriction operation on experiments and then
calculating the proportion probability IT, a form of 'interference' can arise for the series



composite of two experiments (i.e. the experiment constructed as ‘first do experiment 1,
then do experiment 2’).

For example, as mentioned, we will see that our definition of I1 (SN C) gives an

answer of 72 for the SB problem (i.e. restricting to the situation where SB is awake, the
probability that Heads was tossed is a half). But consider a 2-week version of the SB
problem, which we denote SB* =SB * SB: that is, instead of finishing the experiment
after the Tuesday, we keep SB asleep, and on the next Sunday flip a coin again, and
repeat the protocol. In this 2-week composite experiment, restricting to SB only ever
being awake, what is the probability that the last toss was Heads? We might expect to
be able to reason as follows. Restricting to SB being awake, there’s an even chance
she is in the first week or the second week; in each of these weeks, restricting to SB
being awake, there is an even chance Heads or Tails was the result of the last toss;
therefore, restricting to SB being awake, there is an even chance the result of the last
toss was Heads or Tails.

However, we will show that restricting to SB only being awake, the probability that the
last toss was Heads is 1—52 (and the probability it was Tails is 1—72 ). We will see that there
is a type of interference involved in calculating the probabilities IT between the two
sub-experiments (week 1 and week 2) that occurs because of the renormalization along
individual behaviours involved when calculating the proportion of times a composite
behaviour passes through a subset S of states. If we were interested only in counting
the number of times a composite behaviour passes through a subset of states, as
opposed to the percentage of times, this phenomenon would not arise.

In a purely formal manner (and, of course, not in a deeper physical sense) this
‘non-locality’, the failure of classical conditioning laws when restricting to
sub-experiments, and the importance of considering complete behaviours of an
experiment when calculating probabilities, reminds me of the interference of quantum
mechanical experiments (as, say, described by Feynman in the gem of a book QED).

What is the connection between the measures = and IT ?

It will be clear that they are identical when all behaviours of the experiment have the
same length (i.e. pass through the same number of states).

| conjecture there is another more interesting relationship which involves the ‘only being
in’ restriction operation, and which connects the counting measure (representing the



perspective of an external observer) with the proportion measure (representing the
perspective of an internal observer, i.e. a subject of an experiment).

Suppose X is an experiment. Let X" be the experiment constructed by repeating X in
succession n times (i.e. the n-fold series composite of X with itself). So the set of states
of X" is the disjoint union of Xwith itself » times. If S is a subset of the states of X then
let S" be the subset of states of X" comprising the union of each copy of S in each of
the n instances of X.

Conjecture: E(S|C) = Lim Ty (S

This is just a conjecture, but | have verified it numerically in a few examples, including
the case of SB. That is, in the case of the SB experiment the ‘thirders’ position can be
obtained from the ‘halfers’ position by considering an experiment in which the SB
scenario is indefinitely repeated in succession (the limit of the series composite of the
SB experiment with itself), an experiment which | denote as SB . We could describe
this limiting case of a composite experiment as follows. You wake up in a room with a
white glow. A voice speaks to you. “You have died, and you are now in eternity. Since
you spent so much of your life thinking about probability puzzles, | have decided you will
spend eternity mostly asleep and only be awoken in the following situations. Every
Sunday | will toss a fair coin. If the toss is tails, | will wake you only on Monday and on
Tuesday that week. If the toss is heads, | will only wake you on Monday that week.
When you are awoken, | will say exactly the same words to you, namely what | am
saying now. Shortly after | have finished speaking to you, | will put you back to sleep
and erase the memory of your waking time.” The voice stops. Despite your sins, you
can’t help yourself, and in the few moments you have before being put back to sleep
you try to work out the probability that the last toss was heads. What do you decide it
is?

To put this paper in some context, the following provides some background on my
interest in this problem and some references.

My interest in this problem arose from reading an initial blog of Bob Walters. Since then
he has written several posts. Before finalizing this version of the paper | noticed Bob
has put one last post containing calculations that seem related to the restriction
operation | describe here, but it is hard to say given the specificity of his remarks. |
largely sympathize with the comments Bob has made on these blogs (perhaps not
surprising as he was my PhD supervisor and scientific mentor of many years ago), but
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he seems to be taking the position that all that is required to make sense of the
confusion around the problem is a specific calculation. In contrast to this, | believe to
address the confusion certain concepts need to be identified and explicitly and generally
defined.

A friend of mine Sean Carmody (a.k.a. the Stubborn Mule) then also wrote a couple
blogs on the topic, including this one, which contains a link to a previous version of this
paper. As a result of the exchanges in the comments on this blog, | realized that the
operation of “restricting an experiment to a subset of its states” was a fundamental
construction, and so | have fundamentally rewritten the paper with that concept at its
centre.

One of the commenters on Sean’s blog gave a couple of interesting references. One
was to a paper by D Manley. This was different to most papers | have seen on this topic
in that it gave some explicit general definitions. In particular, it identified what | call the
counting and the proportion probability measures. The author did not explicitly identify
the construct of “restricting an experiment to only being in a subset of its states”, but
rather identified the quantity Hmc)(S) and referred to it as the ‘invariance strategy’.

Though a lot of thought went into the work, my main problem with this paper was the
general approach: it put these various definitions through a battery of examples to
assess which was ‘best’ or most ‘robust’ in some sense (or rather to identify ones he
considered ‘worst’ in that they gave nonsensical results in more of the examples he
considered).

As opposed to this, | am taking the approach that the different definitions/constructs are
measuring different things, and hence the applicability of each will depend on the
situation. The point of view that ‘there can only be one’ (definition that should apply in
all contexts) seems to be a point of view taken implicitly by many ‘thirders’ and ‘halfers’,
particularly participants in some of the blogs | have read (which tends to give some of
these exchanges a ‘religious’ or dogmatic tone).

| note that although the counting measure = can be thought of as being more ‘robust’
than the proportion measure I1, this ‘robustness’ can be seen as a consequence of it
being ‘insensitive’ to the restriction operation on experiments. This observation is made
precise in Section 4.

Another paper referenced by the same Stubborn Mule commenter was one by J.
Pittard. In it there is an example of a multiple person Sleeping Beauty problem. | found
this example very interesting: to me it makes clear that, to answer a problem like this,
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one really does need to specify a reference frame. | address this problem as an
example, and specifically calculate probabilities from one subject's reference frame as
well as from the joint reference frame of two subjects.

The following is a summary of the paper. In Section 2 a formal model of an experiment
is given along with a number of examples. In Section 3, the counting and proportion
probability measures are given. In Section 4, the operation of restricting an experiment
to only being in a subset of states is defined, and applied to the standard Sleeping
Beauty Problem as well as to Pittard’s example of multiple Beauties. In Section 5, the
definition of the series composite of experiments is given, and the multi-week Sleeping
Beauty problem is addressed. The conclusion contains some speculative remarks.

2. A formal model of an experiment

There are a variety of ways experiments could be formally modelled. | have tried to pick
the simplest one (i.e. a particular type of finite state Markov Chain) that will allow me to
express the constructs and ideas mentioned in the introduction. However, for reasons |
allude to in Section 4, | think a better theory develops if directed graphs that allow
multiple transitions between states (and where the set of edges out of each state is
given a probability measure) are considered.

We model an experiment X as a finite state Markov Chain. It comprises the following:

e afinite set X, called the underlying set of states of the experiment

e a specified state B which we call the Begin state of the experiment, and a
specified state £ which we call call the End state of the experiment; all the other
states are called the intermediary states of the experiment. We denote the set of
intermediary states by X,.

e a transition function m=my : X¢x X;— %™ (a matrix of non-negative real
numbers) that satisfies the condition, for all states s, e}):( n(s,t) = 1. We say that

leis

conditional on being in state s there is probability n(s,7) of a transition from s to
¢t occuring.

We define a path to be a sequence of states s,,..., s, with n>0 where for all
i, 0<i<n, we have n(s,s,,,) > 0. In this case we write s, — ... — 5, and we say this
path starts at s, and ends at s,,.



The function & satisfies the following conditions.

For all states s, n(s,B) =0; that is, there are no transitions into the Begin state.
n(E,E)=1; that is, the only transition out of the End state is to itself.

For every intermediary state s, there exists a path starting at B and ending at s
(i.e. s is ‘reachable’ from the Begin state).

For every intermediary state s, there exists a path starting at s and ending at £
(i.e. the End state is ‘reachable’ from s).

Define the set Beh(X) of behaviours of an experiment X to be the set of paths starting
at the Begin state and ending at the End state. Let p bea B=s,— .. —>5,=FE bea
behaviour. Define the probability of p occurring to be the product of the probabilities of
each transition in the path occurring, i.e. if > 1 then a(p) = n(B,s,) * ... * n(s,_, E).

Proposition: This defines a probability measure on the set of behaviours. That is,

1 =Y 7n(p), where the sum is over all behaviours of the experiment.
p

Note: for a given experiment, there is at most one behaviour that does not visit an
intermediate state. This behaviour exists if n(B,E) > 0.

Below we will give some examples of experiments, depicting them with graphs (i.e.
state transition diagrams). Usually we will want to refer to subsets of the intermediary
states of the experiment, and we will typically denote them with labels on the vertices of
the graph.

We note that most real world experiments contain effectively infinite variety and detail,
and can be modelled in many ways: the specific choice of a formal model is determined
by which salient features we wish to reflect. Also, two different real world experiments
may be modelled by the same formal model - this would mean the two experiments can
be thought of as formally similar relative to the features we are trying to capture as a
finite state Markov Chain.

Example A



In this experiment, there are three intermediary states. The two transitions out of the
Begin state each have a transition probability of % . The experiment has two behaviours:
one behaviour passes through states 0 and 2; and the other behaviour passes through
the state 1. Both behaviours have a probability % of occurring. What real world example
could this model? Imagine an experiment where initially a fair coin was tossed: if Tails,
run the experiment for two days; if Heads, run the experiment for just one day.

Example B

0 —_—r 2

/,1 H,Man, H Tue,fs

B E

1 —
T.Mon, fow T, Tus, s

This is a model of the standard Sleeping Beauty experiment. We denote it by SB. The
two transitions out of the Begin state each have a transition probability of % There are 4
intermediary states, and two equally likely behaviours. The letter H denotes the subset
of states where Heads had been tossed; T denotes the states where Tails had been
tossed; Mon denotes the states with the property it is Monday; Tue denotes the states
with the property it is Tuesday; Aw denotes the states where SB has been awakened;
and As denotes the state where SB was left asleep.

Example C

E/(E.Mm..-xw\t
Ny s S

T, Mon, S T, Tue Aoy

This is a mild modification of the Sleeping Beauty experiment obtained by removing
state 2. Of course, it is formally equivalent to Example A. | will give two different real
world interpretations of this model. One is that it is the standard SB experiment but
viewed from the perspective of SB’s waking experience (let us say that we have
restricted Example B to SB being awake). Another real world experiment which could be
modelled by this example is a version of the SB experiment run in an institute under
cost pressures: if Heads is tossed, then the experiment ends on the Monday so the bed
can be made free for another experiment on the Tuesday.



Example D

0 —_— 2

// H.Man,0J H, Tue, A

B E

1 — 3
T.Mon,CJ T, Tua, 04

This is the modification of the Sleeping Beauty experiment that was mentioned in the
introduction: SB is awoken on each day regardless of the toss, and she is served
Orange Juice when awoken except on Tuesday when Heads had been tossed - in this
case she is served Apple Juice. Of course, it is formally equivalent to Example B.

Note:

e The distinction between this experiment and the standard SB experiment is not
reflected in how we have formally modelled the experiments. That is, our general
definition of an experiment is not rich enough to make such a distinction. Instead
the difference will be expressed by the choice of method used to calculate
conditioning and probabilities. We will see this in the next Section.

Example E
i 2 —_— [
/,' H, Mo, Ao W1 H, Tue, Az W1 H. Mo, S W2 H,Tue,&s W2 \
B >< ;
\ 1 — . ) /
T, Man A, W1 T, Tus Ao W1 » T Mon, A W2 T, Tue,Aw W2

This is a model of the two week Sleeping Beauty problem SB* mentioned in the
introduction. We have added the subsets of states corresponding to week 1 (W1) and
week 2 (W2). It has eight intermediary states. The Begin state, state 2 and state 3 each
have a pair of outgoing transitions; these each have transition probability 2. There are
four equally probable behaviours. In a later section we will show how this can be
constructed as the series composite of Example B with itself.

Example F
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/ C1, At w2 1, el B \

B —p 1 — —p= E
Z2 At fowd 2,003, Mowd

N, .. S

C3, 81 A C3, 8002 B3

We will use this Markov Chain to model an experiment which is a variant of one
proposed in a paper by J. Pittard; it is a modification of the standard SB problem but
deals with multiple subjects, and poses what | consider to be quite a curly problem.

In this experiment there are three Beauties - B1, B2 and B3. All three are put to sleep.
One of the three is then randomly selected to be the “chosen one”. There will be two
waking sessions in this experiment. After each waking session, those that have been
awakened will be put back to sleep and the memories of the waking session will be
erased. The chosen one is awoken on both sessions, while the others are awoken only
once (in numerical order). That is, if B1 is the chosen one, then on the first session Bl
and B2 are awoken, and in the second session Bl and B3 are awoken; if B2 is the
chosen one, then B2 and B1 are awoken in the first session and B2 and B3 are
awoken in the second session; and if B3 is the chosen one, then B3 and Bl are
awoken in the first session and B3 and B2 are awoken in the second session. At each
session, the two awake Beauties are brought together and each is asked to estimate
the likelihood that they are the chosen one. We assume that the subjects know the
complete experimental set-up.

How should they answer? Suppose you are Bl, and you have just been awoken, but
have no other information. You would estimate the probability of being the chosen one
as Va. You know that you are going to be brought together with either B2 or B3, but that
isn’t giving you any information beyond the experimental set-up. Suppose you are then
brought together with B2. On the one hand, you could reason as follows: you already
knew you were going to see either B2 or B3; seeing B2 isn’t giving you more
information about whether you are the chosen one than if you saw B3 (since you were
going to see one of them); therefore you should stick to your original estimate of /4. On
the other hand, you now know that the chosen one is either yourself or B2, and as you
don’t have any information that B2 doesn’t, you should both conclude that there is an
even chance as to who is the chosen one - that is, you should estimate the probability of
being the chosen one as 7%.
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In the experiment as | have modelled it, there are eight intermediary states, and the
three transitions out of state B each have a transition probability of /4. The subsets
C1, C2 and C3 correspond to whether respectively B1, B2 or B3is the chosen one.
The subsets Awl, Aw2 and Aw3 correspond to states where the respective Beauty is
awake.

In Section 4 we will come back to this example and address the question.

3. The counting and proportion probability measures on the intermediary
states of an experiment
In this section we define the two probability measures on the set of intermediary states
of an experiment which compete for the notion of “the probability that an experiment is
in a subset of its states”.

The notion of an experiment we have given comes equipped with a probability measure
on the set of its behaviours, but not on the set of its states. To proceed we need to give
our experiments the extra structure of a measure (not necessarily a probability
measure) on its set of states that expresses the extent of ‘being’ one state has versus
another. The notions of probability that an experiment is in a subset of states arise from
an interplay between this ‘being’ measure on the states and the probability measure on
the behaviours.

For the purposes of this paper, we will simply take this ‘being’ measure to be the one
that associates to a subset S of states the number of elements #n(S) in that subset. (So
all states are thought of as having the same degree of ‘being’.) But the definitions below
could be modified to accommodate other measures.

Definition: The counting probability measure =

Given an experiment X and a subset S c X, of its infermediary states, define

2 (p)n(S,p)
E(S)=——, where
%ﬂ(p)*n(p)

the two sums are over all behaviours p of X

n(p) denotes the total number of times p visits an intermediary state
n(S,p) denotes the number of times p visits a state in §

n(p) is the probability of behaviour p occurring
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This is a genuine probability measure on the set X, of intermediary states. So we can,
given another subset C of intermediary states, define the conditional probability =,(S|C)

, . _ Y a(p)n(SNC.p)
in the obvious way. It turns out to be equivalent to = (S|C) = ——— .
%n(p)*n(&p)

In what situations would it be reasonable to apply this construction?

One obvious application would be whenever you wanted to make a wager that
depended on the expected number of times an experiment was in a particular subset of
its intermediary states. Consider a variant of the SB problem (posed by many people as
a justification of the thirders position): whenever SB is awoken she is asked to make
odds on whether Heads was tossed; she will take bets on these odds; and she will
cumulate the profits and losses on these bets over the course of the experiment. To
determine the odds of Heads vs not-Heads (i.e. Tails) in order to maximize her
cumulative profit, she should calculate the expected number (not proportion) of times
the experiment will be in a state where Heads had been tossed, conditional on her
being awake. Using the model of this experiment given in Example B of the previous
section, she would calculate E(H|4Aw)=1.

There is another context in which the counting measure can be applied. Suppose you
turned up to a lab and an experiment was in progress. Suppose all you knew was the
set-up of the experiment (expressed in the way we formally modelled an experiment in
the previous section). In particular, you did not know when the experiment started. Now,
suppose v and w were two distinct intermediary states of the experiment, and you
asked whether it was more likely the experiment is in state v or w. To answer this you

would want to compare Y n(p) * n({v},p) the expected number of times the experiment
p

isin v to Y. n(p) * n({w},p) the expected number of times the experiment is in w. For
p

instance, if the former is twice the latter then you would conclude it is twice as likely the
experiment is in state v as itis in state w. From this it is follows that you would
calculate that the probability the experiment is currently in a subset S of the states to be

E4(S).

For example, consider Example C from the previous section. The counting probability
Ey(H) that the experiment is in state 0O, i.e. that Heads had been tossed, is 75 ; and the
counting probability £(7") that it is in the subset {1,3}, i.e. that Tails had been tossed,
is %.
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Notice that the counting measure is not consistent with the probability measure
associated with the set of behaviours of Example C: the behaviour corresponding to
Tails having been tossed is completely characterized by the subset of intermediary
states {1,3}; and the behaviour corresponding to Heads having been tossed is
completely characterized by the subset {0}. The probability of the Tails behaviour
occurring is 2, and the probability of the Heads behaviour occurring is 2. In this
example, under E, the probability of being in (the states that characterize) the
behaviour in which Tails (or Heads) had been tossed is % (or 4), which is inconsistent
with the probability of the behaviour occurring (both are V2).

Is this a problem? Not if you are an external observer who has paid a visit to inspect the
experiment. | say this because in this example the observer could have turned up and
found that the experiment had ended, i.e. the observer could have been in a state
outside the reference frame of the experiment, in which case they would have
concluded it is more likely that Heads had been tossed. One could argue that the
experiment as modelled does not actually capture all the possible states the observer
could have found themselves in when coming to inspect the experiment - in particular, it
is excluding a ‘null’ state representing the non-existence of the experiment.

This is why | claim this counting probability measure is appropriate for an external

observer, and not for a subject such as SB that is operating within the reference frame
of the experiment.

Definition: The proportion probability measure I1

Given an experiment X and a subset S of its intermediary states, define

S,
HX(S) = % z Tt(p) * "’E(pl;) , Where
peBeh(l)

e the sum is over the set Beh(l) of all behaviours p of X that pass through an
intermediary state

n(p) denotes the total number of times p visits an intermediary state

n(S,p) denotes the number of times p visits a state in §

n(p) is the probability of behaviour p occurring

(B, E) is the probability of a transition from the Begin state to the End state, i.e.
the probability of a behaviour occurring that does not visit any intermediary states

Proposition: If an experiment X has the property that all its behaviours pass through
the same number of states (i.e. have the same length), then =, =11I,.
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I1, is a genuine probability measure. So we can, given another subset C of

intermediary states, define the conditional probability IT,(S|C) in the obvious way. That

. I (SN
is, T(SIC) = -4

For example, consider again Example C from the previous section. The proportion
probability I1(H) that the experiment is in state O, i.e. that Heads had been tossed, is
Y2; and the proportion probability I1(7") that it is in the subset {1,3}, i.e. that Tails had
been tossed, is 72 . Unlike the counting probability measure, the proportion probability
measure is consistent with the probability measure on the set of behaviours. This is
because it involves a renormalization at the level of each behaviour.

In other words, it involves calculating the probability of being in S at the level of each
behaviour, and then takes the expected value of these probabilities with respect to the
probability measure on the set of behaviours. That is why | claim the proportion
probability measure is appropriate for a subject in the reference frame of the
experiment.

Consider Example D from the previous section. Upon being awoken and served OJ,
how should the subject SB calculate the probability that the toss was Heads? As she is
a subject of the experiment, she should use I1. She wants to condition on her current
state being one of the OJ states as opposed to being a non-OJ state (i.e. an Apple
Juice state). To calculate this we use classical conditioning under the measure I1, so
she should calculate I1(H|0J), which turns out to be Va.

Of course, we have modelled the standard SB experiment in Example B as being
formally equivalent to Example D. So we also have Ilgy(H|4Aw) = % Is this the right
calculation SB should perform if upon waking she wants to calculate the probability the
toss was Heads? As stated in the introduction there is a key difference between the
standard SB example and the Orange/Apple Juice example. In the standard SB
experiment she should not condition on being Awake as opposed to being Asleep (in
the way we conditioned on being served OJ instead of Apple Juice), since she could
never be Asleep and be asking herself this question. Instead she needs in some sense
to restrict to only being awake. We will define what this means in the next section.

Before getting to the next section, just a note on the scope of conditioning: there is a
sense in which both Z and IT can be conditioned on a subset of the behaviours of the
experiment. For example, if 3 is a subset of the set of behaviours of an experiment,
then we can define II relative to or conditional on 3 as follows:
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I15(S) = . ‘(p) Zﬁn(p) * ",%). We won’t be using this construct in the examples of this
(p) pe

peI

paper, but the theory can accommodate utilizing information on the set of behaviours.

4. Restricting an experiment to only being in a subset of its states
We now get to the key definition of the paper. Conceptually it is quite simple, given an
experiment we want to define a new experiment that starts with the original experiment
and then restricts it to a subset of its intermediary states, but in a sense still
‘remembers’ the paths that went through the other states. In the case of the experiment
Example B we have used to model the SB problem, the construction is very simple: it
amounts to removing one state and one transition, so we end up with Example C. But
for a general experiment it takes a little bit of work to define as we need to define the
transition probabilities of the new experiment.

Definition: Restricting an experiment to only being in a subset of its states
Suppose X is an experiment and C is a subset of its intermediary states. Define (X|C),
the experiment X restricted to only being in C, to be the experiment defined as follows.
e It has the same Begin and End states as X, and its set of intermediate states is
C. So the set of states of (X|C) is (X|C)¢={B,E} UC.

e lIts transition probability function Moy - (XC)g * (X|C)g — %~ is defined as follows.

For v,w € (X|C)yg, define Path_(v,w) to be the set of paths v=5,— ... =5, =w
in Xwith the property that for all i, 0 <i<n, s;¢ C . We include the case where
n=1 here, i.e. the one step path v — w is included in Path_(v,w). Then define

T ch)(v, w)= > (D).

pePath_(v,w)

Proposition: (X|C) is an experiment. In particular, for all v € (X|C)y,

Y (v, w)=1.
vy, O

Exercise: Calculate T yo(B.E) ~ B, E) .

Note/question for mathematicians:
e We would like to make a definition of a morphism/map of (i.e.
structure-preserving function between) experiments in such a way that this
operation of restriction can be viewed as a map experiments (X|C) — X - which

16



could also be dually viewed in terms of thinking of X as an extension of the
experiment (X|C)

One way to do this would be to define a map from experiment X to experiment

Y to be a function f: Xy — Y between the sets of states of the experiments that
satisfies the following condition: for all states v,w of X,

T (v, w) < > ny(p). | believe this defines a category of experiments.
pepathﬁimage(/)(f(v):f(w))

The inclusion of the sets of states (X|C); — X, then is an example of such a map
(and is in fact maximal in a certain sense).

The most natural way to do define a map of experiments, though, would be to
define experiments in terms of the graphs associated with the state-transition
diagrams of the experiment (but where we have generalized the definition of
experiment to allow more than one transition between two states). A morphism
from X to Y can then be defined a map of directed graphs f: X, — F(Y ;)
where X is the graph underlying the state-transition diagram of X and F(Y ) is
the graph underlying the free category on the graph Y. (So f maps a transition
in X to apathin Y .) The map of directed graphs f is asked to preserve the
Begin and End states of the experiments, and would need to satisfy some
condition (I am not sure what) with respect to the transition probability structure.
The above definition of restriction relies on being able to form the complement
—C . What if we considered experiments where the states form a topological
space, or better, can be modelled as an object of a topos? | don’t ask this merely
as a technical question, but moreover | am wondering whether this question has
something to do with the concept of state, in particular, whether a certain type of
discreteness or separability is implicit in a notion of being vs not-being in a state.

Proposition: The counting probability measure Zis insensitive to the restriction
operation in the following sense. If P,C are subsets of the set of intermediary states of
experiment X, then Exo(P NC)=ZUP|C).

This particular form of 'insensitivity' of the counting probability measure largely underlies
why it appears to be 'robust', a property that appeals to many 'thirders'.

The above result does not hold for the proportion probability measure I1. But we do
have the following natural interpretation of the quantity Hye P NC).

Proposition: If P,C are subsets of the set of intermediary states of experiment X, then
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HyoPNCO)=—L— =+ ¥ nX(p)*”(f(gif),where
Y mdp)  peBeh(C) ’

peBeh(C)

e Beh(C)is the subset of behaviours of X that pass through C
e m,(p) is the probability of behaviour p occurring in X
e 1n(S,p) denotes the number of times p visits a state in subset S in X

n(PNC.,p)
n(Cp)

on being in C - just in the context of being in behaviour p.
e So we can interpret Iy (P N C) as the expected value of such probabilities,

e \We can interpret the quantity as the probability of being in P conditional

where the expectation is taken over the probability measure of behaviours
passing through C.

Proposition: The restriction operation is ‘associative’ in the following sense. If X is an
experiment, and C,D c X, then ((X|C)[CND) = (X|CND).

In the examples below, we will often just write ((X]|C)|D) for ((X|C)|C N D).

Example 1 (How SB should condition on being awake)

Consider the model SB of the standard SB experiment - Example B in Section 2. If we
condition this on SB only ever being awake, i.e. construct the experiment (SB|Aw), we
get Example C from Section 2.

We argue that upon awakening, to calculate the probability Heads was tossed SB
should calculate IIgp (1) , which turns out to be %2.

Example 2 (How should multiple Sleeping Beauties condition on being awake)

Warning: don’t get confused by the numbers in this example. (Most ‘halfers’ will
probably assert the answer to this problem is 75; and ‘thirders’ will no doubt claim it is
Yal)

Recall the experiment described in Example F of Section 2:
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Suppose you are B1, you have been awoken and have been brought together with B2.
The problem is to determine the likelihood you are the chosen one (i.e. that the
experiment is in one of the C1 states). Recall there were two arguments: if we take
just the perspective of B1, we got 75; but if we took the joint perspective of B1 and B2,
we got V2.

It turns out the constructs developed here mirror this.

Since we are answering from the perspective of a subject of the experiment, we want to
use the proportion probability measure. There are two perspectives we can take.

On the one hand, consider restricting the experiment to the subset of states 4wl (i.e.
states where B1 is awake). This gives:

0

/ memwz Cmmm \

I:E.l"u.ﬂ T

N

C3, w1 Awd

There are three equally likely behaviours in this experiment. We then calculate the

proportion probability of C1 conditional on Aw?2:

N (C1NAW2) — 14(0.5+0+0)
)(C1|AW2) © Hae@w2)  5(0.5+1+0) 3'

(X]Awl

On the other hand, consider restricting the experiment to the subset of states
Awl N Aw2 (i.e. states where both Bl and B2 are awake). This gives:
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Here there are three equally likely behaviours, only two of which pass through
intermediary states. We then calculate the proportion probability of C1:

Uy awinana)(CD = ﬁ *(3x1+5%0)=17.

So depending on the view taken, just the perspective of B1, or the joint perspective of
B1 and B2, we get different answers. | still have not got my head around this
completely, but this approach suggests that there is not an absolute answer to the
question - the answer must be relative to a perspective.

As mentioned, we have used the proportion probability as we are calculating from the
perspective of the subject. But we note that if we use the counting probability measure,
we get E(CllAw]) =E(CllAwl NAw2)=1.

5. Composite experiments

We now define the series composite of two experiments X and Y . This is supposed to
represent performing experiment X immediately followed by experiment Y .

Definition

Define the series composite X = Y of the experiments X and Y as follows. Its Begin
state is the Begin state of .X; its set of intermediary states is the union X;U Y ,; and its
End state is the End state of Y. Note that the End state of X and the Begin state of ¥
have been excluded. For any two states v,w, the transition probability my,,(v,w) is
defined as follows:

If v,we X then ny,,(v,w) =7 (v,w)

If v,we Y then my,,(v,w)=m,(v,w)

If ve Y,we X then my,,(v,w)=0

If veX,weY then ny,,(v,w) =nv,Ey) * my(By,w)

Proposition: This defines an experiment.
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Recall the the 2-week SB experiment SB* that was Example E from Section 2:

0 —_— — — &
/ H,Mon, Ao W1 H, e, Az W1 H.Mon, S W2 H.TUB.."LE-.M\
\\1 — 5 —_ 7 /

T.Man, Ao W1 T Tz Aow W1 ® T Mon,dw W2 T.Tue,Aw W2

Exercise: Show that SB* can be obtained as the series composite SB * SB of Example B
with itself.

Example (Conditioning the 2-week SB experiment)

In this example we will go through the calculations described in the introduction relating
to the 2 week SB experiment SB* . Specifically, we will see how classical conditioning
laws can break-down when restricting to sub-experiments of a composite experiment
due to a type of ‘interference’ in proportional probability calculations (that arises due to
renormalization of probabilities along individual behaviours).

Below we depict (SB2|Aw):

[i] - 4
H,Mon, Aw, W1 H.Hnn.Aw.M
B
\\1 — 5 —_ 7 /

T.Man, Ao W1 T Tz Aow W1 ® T Mon,dw W2 T.Tue,Aw W2

E

Exercise: check I1 w1 =11

= l
(SB*|4w) w2)=3.

(SB2|Aw)
If you restrict (SBz|Aw) to being in week 1, i.e. calculate ((SBz|Aw)|W1), you get an
experiment that is formally equivalent to (SB |Aw) the standard (1 week) SB experiment
restricted to SB being awake. That is, ((SB2|Aw)|W1) = (SB|Aw). Similarly, you can
check ((SB*|Aw)|W2) = (SB |Aw).

= = = l
Therefore we have T1 (.. -~ () =TL oo () = Mg () =5 -

Now, when restricting this 2-week experiment to SB being awake, we want to calculate

H(SBZ|AW)(I_D’ i.e. the proportion probability that the last toss was heads. We might hope
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to be able to calculate this as follows. Restricting to SB being awake, there’s an even
chance she is in the first week or the second week (as calculated above); in each of
these weeks, restricting to SB being awake, there is a 50% chance Heads was the
result of the last toss (also calculated above); therefore, restricting to SB being awake,
there is an even chance the result of the last toss was Heads or Tails. In mathematical
terms:

(W1) = (W2) = =gk tgx

=
NIl—
D=

1,1
(SBZ|A) (SBZ|Aw)|W1)([_D +I (SB?|Aw) (SB2|Aw)\W2)(I10 272

However, in this case we will see
H(SB‘2|AW)([_D 7 H(SB2|AW)(W1) * H((SB2|AW)\W1)(H) +11 (SB*|Aw )( w2) ((SBZ\Aw)|W2)(m

The experiment (SBZ|AW) has 4 equally likely behaviours which are characterized by the
following subsets of intermediary states: {0,4}; {0,5,7}; {1,3,4}; {1,3,5,7}. A
straightforward calculation gives:
1 =3
I gp @) = 3+ +3+3+0) =3
What is going on? If you look closely, the difference is due to the V3 terms in the
calculation of HSBz(H|AW) (e.g. on the path where there was first a Heads and then a

Tails, the probability the last toss was heads conditional on SB being awake is 74).
These appear because of renormalization of probabilities along composite paths
(thinking of a behaviour being a composite of the week 1 experiment and the week 2
experiment).

The moral is that, from the perspective of the subject, in general you have to look at
entire behaviours of the experiment to calculate the probability of being in a particular
type of state.

Even though there is no cancellation (as can occur when adding amplitudes viewed as
complex numbers in a quantum mechanical context), it doesn’t seem entirely
unreasonable to refer to this effect as a type of non-locality or probabilistic ‘interference’
associated with composing two experiments.

You could more generally consider the experiment of running the SB experiment for n
weeks in a row, i.e. form the n-fold series composite of the experiment with itself. Call
this composite experiment SB” (I won’'t draw a graph!), and consider the probability of
the experiment being in a state such that the last toss has been heads conditional on

SB being awake. What is this probability in the limit as n — «?
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Well, it is easy to see it is equal to limz—ln > () *==.Numerical estimation shows this
N0 =0

2n—i*

converges to Y.

To me, this concurs with intuition. In the limit as we approach the fantastical case where
SB is in an eternal experiment, there is a sense in which the space of behaviours
becomes increasingly crowded with behaviours for which the probability of it being
heads conditional on SB being awake is close to .

Question:
e to prove the convergence to ¥s is equivalent to showing

,}E{‘oz_l %(7) * (5= —-+) = 0. Any suggestions on how to do this (maybe using

results about the limiting case of the binomial distribution approaching a
Gaussian) ?

As noted in the introduction, we generalize this to make the following conjecture relating
the perspectives of an external observer and an internal observer (i.e. a subject) of the
experiment.

Suppose X is an experiment. Let X" be the experiment constructed by repeating X in
succession n times (i.e. the n-fold series composite of X with itself). So the set of states
of X" is the disjoint union of Xwith itself » times. If S is a subset of the states of X then
let S" be the subset of states of X" comprising the union of each copy of S in each of
the n instances of X.

Conjecture: =(S|C) = Lim Ty (S

6. Final comments

To sum up, this paper has attempted to clarify the SB and related problems by making
two key conceptual distinctions: one regards internal versus external perspectives (as
represented respectively by the use of the proportion probability measure IT1 and the
counting probability measure = ); and the other regards the distinction between ‘only
being in a state satisfying property P’ versus ‘currently being in a state satisfying
property P as opposed to —P’ (as represented respectively by the use of the operation
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of restricting experiments to only being in a subset of states and the classical
conditioning associated with probability measures).

| have not in this paper made any mathematical definitions that specify, or have in any
sense proven, when one should use the proportion probability measure IT instead of
the counting measure =, or when one should use the classical conditioning associated
with these probability measures instead of restricting experiments to only being in
certain states. Instead | have used examples to indicate when/how they should be used.
Moreover, the concept of experiment | have defined is so abstract that | have used the
same formal model to represent two different real world situations (e.g. Example B and
Example D), and argued that different constructs need to be applied in the two
situations. This could be seen as a weakness in the comprehensiveness of the
approach as a formal model. To address this one would have to develop a deeper
mathematical theory of experiments in which concepts and distinctions such as internal
vs external, and ‘currently being in’ vs ‘only ever being in’ were made explicit in the way
experiments themselves are defined.

On a technical note, the series composite construction in the previous section (or a
variant of it) can be understood in terms of the algebra (a monoidal bicategory) of what
are known to category theorists as cospans of directed graphs (or more generally one
could consider reflexive graphs, or even cospans of categories equipped with 'duration’
functors into a monoid). One can also consider structures known as spans of graphs to
model components working in parallel and synchronizing over actions. The idea of using
spans and cospans of graphs (and in this context defining operations such as parallel
and sequential composition, various forms of feedback, as well studying properties of
such operations such as distributive laws) was first put forward myself some 15 years
ago with Bob Walters and Nicoletta Sabadini to develop a compositional model of
distributed systems (where components could share state as well as synchronize over
actions). Bob and Nicoletta, with their collaborators, have continued to work with these
constructs. If you are interested in learning more you can find out about them from
Bob’s blog or you can peruse his publications page. Specifically, they have looked at
how Markov Chains can be modelled in this context.

What | originally found interesting about the SB problem is that it forced me to define
what | meant as a halfer by 'the probability an experiment is in a state satisfying certain
conditions..."; and, in doing so, | needed to assert the following philosophical or ‘moral
position’:
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As a subject of an experiment, to make sense of what it means for an experiment to be
in a state requires referencing the complete behaviour of which the state is being
considered a part

More specifically, this ‘moral position’ manifested itself in the following way: to capture
the perspective of a subject of an experiment, the renormalization associated with the
conditioning of the probabilities of an experiment being in a state should be first carried
out at the level of each complete behaviour, and then integrated over the probability
space of behaviours of the whole experiment to obtain a quantity such as HyoP NC).

Many people may well disagree with this ‘moral position’. However, | note, this seems to
me to echo (again, perhaps only very weakly) Feynman's following remark made to
assist readers in thinking about quantum mechanical interference (p81, QED, Princeton
University Press, 1988 printing): 'let me remind you of a most important principle: in
order to correctly calculate the probability of an event, one must be very careful to
calculate the complete event clearly - in particular, what the initial conditions and the
final conditions of the experiment are.’

There is obviously a world of difference between combinatorial structures such as a
Markov Chain, and the calculations involving complex numbers and probability
amplitudes. Also, | realize there is no analogy with the key physical aspect of QED (as
say represented in Chapter 2 of Feynman’s book Quantum Mechanics and Path
Integrals) whereby the classical behaviour can be seen as resulting from the
cancellation of rapidly spinning phases on paths deviating from the classical path (in
cases where the action is very large compared to Planck’s constant). So the analogy
perhaps amounts to no more than simply noting that in both cases interference has
something to do with the algebraic fact that in general (a + b)(c +d) # ac+ bd.

But | can’t help wondering if there is something more, perhaps something to do with
emergence (where descriptions of two levels of reality are involved, with one level giving
rise to events in the other). | am imagining a situation where we couldn’t directly
observe whether an experiment is in a given state, but only ask questions like ‘is the
experiment X in a state satisfying a property P, conditional on the experiment only
being in states satisfying C’; to which we would get an answer of yes (an event) with
probability iy NC). For this to happen, the answer can’t be generated at random
in the middle of a behaviour of X (as the total number of times the behaviour will visit a
state satisfying the condition C needs to be known - this is the renormalization). So the
‘time’ in which the underlying behaviour of the experiment occurs would have to be in
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some sense independent of the time in which we, ‘outside the experiment’, are waiting
for an answer (i.e. for the event to happen). Let me put this another way. The difficulty
with the concept of emergence is that you want one (lower) level description of reality to
give rise in some sense to another (higher) level description of reality without the lower
level trivially explaining (reducing) the higher level. Can the ideas presented here be
used or extended to give a formal model of such a thing?
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