Musical Education

by Stubborn Mule on 9 November 2014 · 73 comments

Musical EducationOn our longer family drives I take an old iPod crammed with even older music. Usually I take requests, and almost inevitably the children choose They Might Be Giants, and preferably the tracks Fingertips and Particle Man. But, our last trip was different. Instead I took the opportunity to the children some exposure to artists formative in the history of popular music. There is nothing like a grand plan to pass the time on the freeway.

Skimming through the albums, I decided that the best of The Jam would be a good place to start. It went down surprisingly well. Even our eldest, who generally prefers electronica, responded well to Eton Rifles. Marking that up as a success, the next choice was the best of Madness. This was more familiar territory, as they already knew (and loved) I Like Driving in My Car. Again it was successful.

Although this was a good start, it was not systematic, depending as it did on swift scanning through the albums on the iPod. So I have now begun to assemble a playlist on Spotify with a name as grandiose as its aim: Musical Education. The rules are simple but tough:

  1. Four representative tracks each (no more) are selected from major artists in the history of popular music.
  2. Each track must be from a different studio album. If the artist does not have at least four albums, refer step three. Singles not released on an album are also eligible.
  3. Single tracks can be included for important artists lacking the catalogue breadth for four essential tracks.

The playlist has nearly reached 150 tracks and includes artists such as The Doors, The Animals, James Brown and Prince. Inevitably, some choices reflect my own interests. My taste in Krautrock ensures the appearance of Kraftwerk, but in their defence I point to their appearance at the Tate and MOMA in recent years. Other choices may not have the endorsement of the artworld, but surely the sheer persistence of Mark E. Smith in continuing his post-punk aesthetic justifies a place for The Fall (Update: also The New Yorker rates The Fall highly too). As for XTC, well my own obsessions may be tilting the scales of significance. But perhaps not.

For some artists, choosing only four tracks is extremely difficult. Four David Bowie tracks…how? But rules are rules. Fortunately the toughest choice is taken away from me. The Beatles are not on Spotify, so they are ruled out on a technicality.

I have been road testing the list and there have been some surprises. The middle child has developed a strong interest in The Beach Boys, particularly God Only Knows (and that’s not just because of the BBC version), while the eldest has expressed a visceral dislike for James Brown. I did expect some bumps in the road of this musical journey: after all the boys refuse to let me play Nick Drake in the car (maybe one day they will learn they are wrong). Still, I am now getting requests for Hit the North, so something must be working.

This musical education is a work in progress, so I need help from all of you. Are there any big names I have missed? Let me know in the comments. Not all of the lists in the list are my own favourites, so I may have missed an essential track. Comments are open below, so please jump in!

 

{ 73 comments }

If you read the last post on the Sleeping Beauty problem, you may recall I did not pledge allegiance to either the “halfer” or the “thirder” camp, because I was still thinking my position through. More than a month later, I still can’t say I am satisfied. Mathematically, the thirder position seems to be the most coherent, but intuitively, it doesn’t seem quite right.

Mathematically the thirder position works well because it is the same as a simpler problem. Imagine the director of the research lab drops in to see how things are going. The director knows all of the details of the Sleeping Beauty experiment, but does not know whether today is day one or two of the experiment. Looking in, she sees Sleeping Beauty awake. To what degree should she believe that the coin toss was Heads? Here there is no memory-wiping and the problem fits neatly into standard applications of probability and the answer is 1/3.

My intuitive difficulty with the thirder is better expressed with a more extreme version of the Sleeping Beauty problem. Instead of flipping the coin once, the experimenters flip the coin 19 times. If there are 19 tails in a row (which has a probability of 1 in 524,288), Sleeping Beauty will be woken 1 million times. Otherwise (i.e. if there was at least one Heads tossed), she will only be woken once. Following the standard argument of the thirders, when Sleeping Beauty is awoken and asked for her degree of belief that the coin tosses turned up at least one Heads, she should say approximately 1/3 (or more precisely, 524287/1524287). Intuitively, this doesn’t seem right. Notwithstanding the potential for 1 million awakenings, I would find it hard to bet against something that started off as a 524287/524288 chance. Surely when Sleeping Beauty wakes up, she would be quite confidence that at least one Heads came up and she is in the single awakening scenario.

Despite the concerns my intuition throws up, the typical thirder argues that Sleeping Beauty should assign 1/3 to Heads on the basis that she and the director have identical information. For example, here is an excerpt from a comment by RSM on the original post:

I want to know if halfers believe that two people with identical information about a problem, and with an identical set of priors, should assign identical probabilities to a hypothesis. I see the following possibilities:

  1. The answer is no -> could be a halfer (but not necessarily).
  2. The answer is yes, but the person holds that conditionalization is not a valid procedure –> could be a halfer.
  3. The answer is yes and the person accepts conditionalization, but does not accept that the priors for the four possibilities in the Sleeping Beauty puzzle should be equal –> could be a halfer.
  4. Otherwise, must be a thirder.

My intuition suggests, in a way I struggle to make precise, that Sleeping Beauty and the director do not in fact have identical information. All I can say is that Sleeping Beauty knows she will be awake on Monday (even if she subsequently forgets the experience), but the director may not observe Sleeping Beauty on Monday at all.

Nevertheless, option 2 raises interesting possibilities, on that have been explored in a number of papers. For example in D.J. Bradley’s “Self-location is no problem for conditionalization“, Synthese 182, 393–411 (2011), it is argued that learning about temporal information involves “belief mutation”, which requires a different approach to updating beliefs than “discovery” of non-temporal information, which makes use of conditionalisation.

All of this serves as a somewhat lengthy introduction to an interesting approach to the problem developed by Giulio Katis, who first introduced me to the problem. The Stubborn Mule may not be a well-known mathematical imprint, but I am pleased to be able to publish his paper, Sleeping Beauty, the probability of an experiment being in a state, and composing experiments, here on this site. In this post I will include excerpts from the paper, but encourage those interested in a mathematical framing of a halfer’s approach to the problem. I am sure that Giulio will welcome comments on the paper.

Giulio begins:

The view taken in this note is that the contention between halfers and thirders over the Sleeping Beauty (SB) problem arises primarily for two reasons. The first reason relates to exactly what experiment or frame of reference is being considered: the perspective of SB inside the experiment, or the perspective of an external observer who chooses to randomly inspect the state of the experiment. The second reason is that confusion persists because most thirders and halfers have not explicitly described their approach in terms of generally defining a concept such as “the probability of an experiment being in a state satisfying a property P conditional on the state satisfying property C”.

Here Giulio harks back to Bob Walters’ distinction between experiments and states. In the context of the Sleeping Beauty problem, the “experiment” is a full run from coin toss, through Monday and Tuesday, states are a particular point in the experiment and as an example, P could be a state with the coin toss being Heads and C being a state in which Sleeping Beauty is awake.

From here, Giulio goes on to describe two possible “probability” calculations. The first would be familiar to thirders and Giulio notes:

What thirders appear to be calculating is the probability that an external observer randomly inspecting the state of an experiment finds the state to be satisfying P . Indeed, someone coming to randomly inspect this modified SB problem (not knowing on what day it started) is twice as likely to find the experiment in the case where tails was tossed. This reflects the fact that the reference frame or ‘time­frame’ of this external observer is different to that of (or, shall we say, to that ‘inside’) the experiment they have come to observe. To formally model this situation would seem to require modelling an experiment being run within another experiment.

The halfer approach is then characterised as follows:

The halfers are effectively calculating as follows: first calculate for each complete behaviour of the experiment the probability that the behaviour is in a state satisfying property P; and then take the expected value of this quantity with respect to the probability measure on the space of behaviours of the experiment. Denote this quantity by ΠX(P) .

An interesting observation about this definition follows:

Note that even though at the level of each behaviour the ‘probability of being in a state satisfying P’ is a genuine probability measure, the quantity ΠX(P) is not in general a probability measure on the set of states of X . Rather, it is an expected value of such probabilities. Mathematically, it fails in general to be a probability measure because the normalization denominators n(p) may vary for each path. Even though this is technically not a probability measure, I will, perhaps wrongly, continue to call ΠX(P) a probability.

I think that this is an important observation. As I noted at the outset, the mathematics of the thirder position “works”, but typically halfers end up facing all sorts of nasty side-effects. For example, an incautious halfer may be forced to conclude that, if the experimenters tell Sleeping Beauty that today is Monday then she should update her degree of belief that the coin toss came up Heads to 2/3. In the literature there are some highly inelegant attempts to avoid these kinds of conclusions. Giulio’s avoids these issues by embracing the idea that, for the Sleeping Beauty problem, something other than a probability measure may be more appropriate for modelling “credence”:

I should say at this point that, even though ΠX(P) is not technically a probability, I am a halfer in that I believe it is the right quantity SB needs to calculate to inform her degree of ‘credence’ in being in a state where heads had been tossed. It does not seem ΞX(P) [the thirders probability] reflects the temporal or behavioural properties of the experiment. To see this, imagine a mild modification of the SB experiment (one where the institute in which the experiment is carried out is under cost pressures): if Heads is tossed then the experiment ends after the Monday (so the bed may now be used for some other experiment on the Tuesday). This experiment now runs for one day less if Heads was tossed. There are two behaviours of the experiment: one we denote by pTails which involves passing through two states S1 = (Mon, Tails), S2 = (Tue, Tails) ; and the other we denote by pHeads which involves passing through one state S3 = (Mon,Heads). Let P = {S3}, which corresponds to the behaviour pHeads . That is, to say the experiment is in P is the same as saying it is is in the behaviour pHeads. Note π(pHeads) = 1/2 , but ΞX(P) = 1/3 . So the thirders view is that the probability of the experiment being in the state corresponding to the behaviour pHeads (i.e. the probability of the experiment being in the behaviour pHeads) is actually different to the probability of pHeads occurring!

This halfer “probability” has some interesting characteristics:

There are some consequences of the definition for ΠX(P) above that relate to what some thirders claim are inconsistencies in the halfers’ position (to do with conditioning). In fact, in the context of calculating such probabilities, a form of ‘interference’ can arise for the series composite of two experiments (i.e. the experiment constructed as ‘first do experiment 1, then do experiment 2’), which does not arise for the probabilistic join of two experiments (i.e. the experiment constructed as ‘with probability p do experiment 1, with probability 1-­p do experiment 2’).

In a purely formal manner (and, of course, not in a deeper physical sense) this ‘non­locality’, and the importance of defining the starting and ending states of an experiment when calculating probabilities, reminds me of the interference of quantum mechanical experiments (as, say, described by Feynman in the gem of a book QED). I have no idea if this formal similarity has any significance at all or is completely superficial.

Giulio goes on to make an interesting conjecture about composition of Sleeping Beauty experiments:

We could describe this limiting case of a composite experiment as follows. You wake up in a room with a white glow. A voice speaks to you. “You have died, and you are now in eternity. Since you spent so much of your life thinking about probability puzzles, I have decided you will spend eternity mostly asleep and only be awoken in the following situations. Every Sunday I will toss a fair coin. If the toss is tails, I will wake you only on Monday and on Tuesday that week. If the toss is heads, I will only wake you on Monday that week. When you are awoken, I will say exactly the same words to you, namely what I am saying now. Shortly after I have finished speaking to you, I will put you back to sleep and erase the memory of your waking time.” The voice stops. Despite your sins, you can’t help yourself, and in the few moments you have before being put back to sleep you try to work out the probability that the last toss was heads. What do you decide it is?

In this limit, Giulio argues that a halfer progresses to the thirder position, assigning 1/3 to the probability that the last toss was heads!

These brief excerpts don’t do full justice to the framework Giulio has developed, but I do consider it a serious attempt to encompass all of the temporal/non-temporal, in-experiment/out-of-experiment subtleties that the Sleeping Beauty problem throws up. This paper is only for the mathematically inclined and, like so much written on this subject, I doubt it will convince many thirders, but if nothing else I hope it will put Giulio’s mind at rest having the paper published here on the Mule. Over recent weeks, his thoughts have been as plagued by this problem as have mine.

Update: Giulio has now posted a thoroughly revised version of his paper.

{ 56 comments }

Sleeping Beauty

26 August 2014

For the last couple of weeks, I have fallen asleep thinking about Sleeping Beauty. Not the heroine of the Charles Perrault fairy tale, or her Disney descendant, but the subject of a thought experiment first described in print by philosopher Adam Elga as follows: Some researchers are going to put you to sleep. During the two days […]

27 comments Read the full article →

Getting Australia Post out of the red

19 June 2014

John Carmody returns to the Mule in his promised second guest post and takes a close look at Australia Post’s profitability with some (ahem) back-of-the-envelope calculations. There are many forms of communication which underpin the function and productivity of a modern society like Australia. Despite the Cassandra-commentary from Mr Ahmed Fahour (the well-paid CEO of Australia Post), regular mail […]

1 comment Read the full article →

The government’s medical fairyland

14 June 2014

For the first time in a while, John Carmody returns to the Stubborn Mule with the first of two guest posts. He argues that the government’s proposed medical “co-payments” do not add up. The government continues to flounder about many details of its budget and part of the reason is a lack of stated clarity […]

2 comments Read the full article →

Government spending

20 May 2014

Before, during and after this month’s budget, Treasurer Joe Hockey sounded dire warnings about Australia’s “budget emergency”. Amidst this fear-mongering, it was a pleasant relief to come across a dissenting view. In a recent interview on 2SER Dr Stephanie Kelton (Department of Economics at the University of Missouri in Kansas City) argued that the government budget is very […]

16 comments Read the full article →

Randomness revisited (mathsy)

21 April 2014

My recent randomness post hinged on people’s expectations of how long a run of heads or tails you can expect to see in a series of coin tosses. In the post, I suggested that people tend to underestimate the length of runs, but what does the fox maths say? The exploration of the numbers in this post draws on […]

1 comment Read the full article →

Do Daleks use toilet paper?

18 April 2014

I have been watching some (very) old Doctor Who episodes, including the first ever serial featuring the archetypal villains, the Daleks. In this story, the Daleks share a planet with their long-time enemies, the Thal. After a war culminating in the denotation of a neutron bomb, both races experience very different mutations. The Daleks have […]

6 comments Read the full article →

Randomness

6 April 2014

With three children, I have my own laboratory at home for performing psychological experiments. Before anyone calls social services, there is an ethical committee standing by (their mother). This evening, I tried out one of my favourites: testing the perception of randomness. Here is the setup: I gave the boys two pieces of paper and […]

4 comments Read the full article →

Chinese non-residents…in China

31 March 2014

Recently I travelled to China for the first time. My first glimpse of Beijing took in the Escher-like headquarters of Chinese TV station CCTV. It is an extraordinary building and to get a proper sense of it, you have to see it from a number of different angles. Driving across the city, impressed by the […]

4 comments Read the full article →